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The accuracy of the location parameters is a function of delay measure-

ment variance, apriori variance, and number of sensors. Depending on the

other parameters, the number of sensors can be traded against accuracy and

cost.

Summary of Work, 1 Nov. 1982 - 30 Sept. 1983:

The second year of this contract has considered the effects of spatially

correlated noise on delay estimation in linear arrays. The nonlinear

equations for the multiple (M-1) Maximum Likelihood (ML) estimators have

been derived. Either delays with respect to the 1st (end) sensor or any

independent M-1 delays in the array are usable as unknowns. Cramer-Rao

Matrix Bound elements have been formulated, computed, and plotted for a

number of realistic values of noise correlation and other parameters.

The variation of the variance bound with correlation is not as

significant as the variation with array look angle; up to 5 dB differences

were noted.

Most significantly it has been shown that adding more sensors is not

always fruitful when spatial noise correlation is present. In the ranges

of our parameters little is to be gained in a change from 9 to 15 sensors

compared to the change from 3 to 9. More data production would be useful

on this subject.

A considerably briefer version of the enclosed report will be submitted

to ASSP for publication. Last year's work has been revised per reviewer's

suggestions and is re-submitted.

Opportunity was taken following ICASSP-'83 (where a paper was given

on the early work of this years research) to visit NUSC in New London in
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in April. There discussions with a number of people solidified some of

the details and focus of this years work. In particular, the work and

data involving spatially correlation noise in towed arrays was brought

to attention. This allowed practical values of parameters and clustered

configurations to be considered.
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ABSTRACT

OPTIMAL DELAY ESTIMATION IN A MULTIPLE

SENSOR ARRAY HAVING SPATIALLY CORRELATED NOISE

by

R. L. Kirlin and Lois A. Dewey

Electrical Engineering Department

University of Wyoming

The maximal likelihood (ML) estimation of time-of-arrival differences

for signals from a single source or target arriving at M > 2 sensors has

been the subject of a large number of papers in recent years. These time

differences or delays enable target location. Nearly all previous work has

assumed noises which are independent among all sensors. Herein noises are

taken to have complex correlation between sensors. A set of nonlinear

equations in the unknown delays is derived and possible simplifications

discussed. The unknowns are in one case the M-1 delays referred to the first

sensor and in another case an M-1 dimensional subset of independent delays from

the M(M-l)/2 pairwise delays. The Fisher information matrix (FIM) for the

estimates is also derived. The Cramer Rao Matrix Bound (CRMB), which is the

inverse of FIM, will show optimal estimator covariances; these are different

than the covariances of correlator delay estimators derived by Hahn [41

Computer evaluations are given for CRMB elements with varied SNR and noise

covariance values typical of turbulent boundary layer noise in towed arrays.

September 30, 1983
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OPTIMAL DELAY ESTIMATION IN A MULTIPLE

SENSOR ARRAY HAVING SPATIALLY CORRELATED 
NOISE+

I. Introduction

The estimation of time-of-arrival differences for signals from a

single source or target arriving at multiple sensors has been the subject

of a considerable number of papers in recent years. These time delay

differences, or simply delays, enable target localization through straight-

forward geometrical considerations when the signal path is non-dispersive

[1,2]. Although target location is the primary goal, delay estimation is

essentially equivalent as there is a one-one*, although nonlinear, relation

between the maximum-likelihood (ML) delay vector and ML location vector.

Essentially all of the results of available literature (except [9] have

been based not only upon the geometric and non-dispersive assumptions stated

above but also upon noise spectra which are independent among sensors. The

independent noise assumption is adequate if either the sensor self-noise is

dominant or the sensors are spatially separated sufficiently such that the

environmental noise is indeed independent or uncorrelated among sensors.

However, this is not always a reasonable assumption and the effects of

spatially correlated noise in the estimation of delays and delay variances

must be considered. Thus appropriate analyses are herein undertaken to

consider correlated noise from diffuse sources. Results are compared to

those previously published for independent sensor noises.

Owsley and Fay [111 have considered correlated noise when clustering

sensors and optimizing beamformers. The comparable optimization of delay

estimation has not previously been approached. By choosing the correlation

parameter p, we may include the proportionality of correlated turbulent

boundary layer tow-noise and isotropic sensor noise.

The basic approach is to assume that complex Fourier coefficients X.(k)
1

at the i- sensor for the k- frequency are available, having been obtained

from T-second time records, where T is long with respect to the signal

correlation time.

* For an array with three sensors in line there is an ambiguity in the

sign of bearing angle, which we assume may be solved with additional

information.

+ This study funded under office of Naval Research, contract number

N00014-82-K-0048.
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The time data records are

xi(t) = s(t-di) + ni(t), i = 1,2,...M. (1)

thwhere d. are the delays from the reference sensor to the i- sensor1

(dI = 0), s(t) is a zero-mean, Gaussian, stationary signal, and ni(t) is the

th
additive Gaussian noise at the i- sensor.

II. Background

The problem of delay vector estimation for multiple sensors has been

studied with the above approach in original papers by Hahn and Tretter [31,

Hahn [4] and Schultheiss [5]. Closely following their presentations, let

Xi(k) = T12 x.(t) exp{-jkwot}dt, k = 1,2,...,K, (2)
1 T T/2

where w = 27/T. Define a vector X containing the above MK Fourier
0

coefficients as elements. If S(w) and N.(w) are the signal and noise
1

thspectra at the i- sensor, the probability density for x can be written
KK

MK K-1 K T -1
p(X) =Kr H det R(k)) exp[-E X (k)R (k)X*(k)] (3)

k=l k=l

where

X(k) = [X1 (k), X2(k),---,XM(k)]T

X = [xT(1); xT(2),---,xT(K)]
r

V(k) = [1, exp(-jkw od 2 ),---,exp(-jkw od M ) ]T

N(k) = [Nij (k)], an MxM matrix of noise

cross-power spectra

R(k) = N(k) + S(k) V*(k)V T(k)

and where * superscript denotes complex conjugation.

In order to obtain the ML estimate of delays, determinant and inverse

theorems of use are

IRI = IN + Sv*vT = INIII + N- sv*vTI = INI(l + SVTN-1V*) (4)
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and

R-1 = N-1 - N-1 V*(VTN-1v* + I/S) - I VTN -1 (5)

Defining elements of N-1 as N ik the likelihood function of the delay vector

DT = (d 2 , d3 ... , dM) is, using (4),

A = Xn p(X) = -kn( MK ) - Y Xn[jNi (I + SV TN-V*)]

B+ +~-[X [TN-Ix* - xT N-Iv*v T N-Ix*] (6) ;

B+ v T N-1 V* + I/S

where I means sum over positive frequencies.
B+

Hahn and Tretter [3] have shown that, when N is diagonal, [Nl,N 2....NM],

the Fisher information matrix for D (FIM = - <grad<grad Rn A>> where <.> is ij
expected value) is

2w 2 N- ) Np
FIM=Z 2w2  [(tr N -lNTN p] (7)

B+ 1 + S/Ni P P

-1 -1where N is N with the first row and column removed. The Cramer-Rao
p

Matrix bound (CRMB) for the delays D is (FIM)-I . The ML estimate covariance

is known to asymptotically approach the CRMB. The ML estimate for small

delays (D is the error when D = 0) and independent noise is

-1iT
D = -<C> B (8)

where
-1

<C> = FIM, (9)

B jw S T -1 T_ T -l
B =  1 N [xx * T ]N , (10)

B+ 1 + IS/N. p p p

4 and x is X(k) with the first element (X1 (k)) removed.

Hahn and Tretter also show that the ML D estimate can be implemented

either as a beamformer (ideally in real time only when the Ni are propor-

tional, because of phase-matching filter criteria), or as a cross correlator
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system which produces the M(M-l)/2 delay estimates. The correlator system

has cross-spectral filters

IF ij I , j 1, 2, .... M, (11)
SSNk i#j.

k

The error covariance matrix for the pair-wise delay estimates of the cor-

relators is shown by Hahn [4] to have elements

-2 fB w2 1Fiji 4 [NiNj + S(Ni + N.)]dw
var (12)

(B w2Fij 
12 Sdw )

2

A A

covar(dij, dk£) = 0, i, j, k, Z all distinct

21 w2T 1 2 F 2 SNdw
covar(dij ,d - B ij 1 SN#d.(13)

ii' T
fB W2IFiji 2 S2 B  2 1F I Sdw

- - covar (dij, dgi) , j #

It is emphasized that these are correlator error covariances of the d..

and not ML estimator error variances, which are derived herein.

The delays having covariance matrix defined by (12) and (13) are not

the M-1 delays referred to a single sensor. Hahn and Tretter have shown how

to use weighted linear combinations of the M(M-l)/2 cross correlation delay

estimates, d to form an estimate for D = (di) which achieves the CRMB of

(7).

With independent noises maximization of A in (6) over the vector D

concentrates on the second term in the second summation, because other terms

are not dependent on the d. This is not generally the case, and an analytical

solution is not available, as was pointed out in the multipath analysis

given by Owsley [6]. However, the generation of a set of nonlinear equations

in the unknowns dij may be obtained.

In the next section ML estimator equations for the M(M-l)/2 pairwise

delays are derived. Section IV produces the CRMB for these delays. Section

V considers the M-1 delays di - dl, and Section VI derives the CRPB for the

M-1 delays di - dI .
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III. Estimation of an Independent Subset of M(M-1)/2 Delays

This section will determine equations for ML estimates of an independent

subset of the M(M-l)/2 delays d. - dk = d ik In contrast most other papers

referenced find ML estimates of either the M-1 delays (di - d1) , 2 j i < M, or

other parameters such as range and bearing, functions of which the d. may be

written. The reason for our choosing the dik is that a-priori information

about linear relationships among them may subsequently be used as in (101

to improve the delay estimates di - d or any other subset.

Because we will find equations for real variables and real unknowns,

and we wish to be able to show effects of correlated noise on various parts

of the formulations, double sums throughout the paper are usually broken into

several pieces.

Now consider the two summations in (6), the only functions of D,

A'= - £n[(-l + S I Npp + S N Npqe-Jw(dp - d q ))IN]
B+ p p q#p

Nik ~NirNtk e w(dr dt)
XBi[N p e q (dr - d + l]Xk (14)

B+ i k t r I N + N e dq ]
p p q#p

Thus we would like to solve for the dik which maximizes

A'' - n (/S + e-dpq

B+ p q
Nmr Ntn jwd+ X X N N xe rt (15)

B+ m n m n r t 1/S + I N Pqe-JWdpq
p q

= [-Zn(g) + xTN- V*VN lX*1 (16)
B+ g

where, using (15),

g= IS + vTNlV* l/S + IN + 2 Y 1 (cos wd Re Npq )

p p q>p

+ sin wd I NPq}) (17)pq m

Differentiating A'' with respect to d (assuming all d independent) gives
ik ikr T -1

- (V N V*)
id

ik B+ ik

gX TN_ 1 (V*V T)N- 1x* - X TN_ V*V TN1 X* a(V T N-v*] (18)

+ ik

g
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Setting this equal to zero and rearranging gives

d-i(vN-1v* )  I TN 1 1 V*V T ar vTN-Iv*) N- X*}=O (19)
2{-VN 1)1 Tl[dik k T ki-

The square-bracketed terms in (19) are a matrix U(i,k) = (u (i,k)) A typical
mn

element u Trnhas values which differ according to whether or not (m,n)
(i,k) or (k,i). Using

(v*vT) = ejwd mn' (2(

jwe jwdik , (m,n) = (i,k)

;(V*V T -jwe 'jdik ,(m,n) = (k,i) (20b)

vdik m0, 0 (m,n) # (i,k),(k,i)

and

g 9V TN-v * =w JW-NikeJwdik + Nkie+Jd ik)
3 d ik

-ik
=2e(-Re {N isin 6jd + ik}Cos Wd (20c)

ik ik

in u (i,k) give
mn /

ewdik (jW - gl/g) ,(m,n)=(i,k)

Sik (-Jw-g,/g) (m,n)=(k,i) (21)
mn g

-e jmn gl/g ,(m,n)#(i,k), (k,i)

Insertion of (21) into (19) constitutes M(M-I)/2 equations, nonlinear, to be

solved for the d ik This is pursued further in Appendix A for diffuse noise.

Note that only M-1 delays can be independent. We now turn our attention

to the CRMB.
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IV. The Cramer-Rao Bound for an Independent Subset of the M(M-l)/2 Delay

Estimates of dik

As is well known, maximum likelihood estimators have variances which

approach the Cramer-Rao bound. The variance bounds for the dik are the

elements in the diagonal of

CR~f = (IN) l ,,T -1
CRMB = (FIM) (-<grad(grad kn A'') >)-

, (22)

wherein FIM is the Fisher Information Matrix, grad A'' is a row vector
th thwhose nr- element is the derivative of A'' with respect to the m- delay

th(the ifn d here), A'' is the expression in Eq. (17), and <'> denotes
ik

expectation. The outer gradient operator creates a matrix whose elements

are a 9A" ). We have already found the inner partial -- the result
a d rt adik

is Eq. (19) and following. For any M-1 independent delays the following applies.

Taking and negating the second partial with respect to d gives
rtaA r~vTNIv,  d(T-I,  (vTN-I ,

( a(VTNv*)
ad -~ d[gT-( ad - -d D V*)
rt ik B+ rt ik ik rt

2
g

+ 1 [g xT-ITNl rt ( V*VT )N -IXl XT N-1 9(V*V T - TN-Iv*)
S ad X Nd Nd

g dik rt

T-1 T-14 ( T -1
X N V* N XVN V*

_ g_ (di dr d

rt ik

(V N_ V*) T i (V*V T) +-l2Vv
ad k Xd N Nx}

1~4r(T-V*VT -lV N(~ -lV*
+gr X N_ N-X* NV))+2g (

r ik rt

9 1 g1g2  T -I x (V*V T g2  (V*V T

rB+ 9 a dg12rt D dlg2/g) - ik

1 vT -1 a (V*Nf 2 T*V
gad rt g g rt 9 ~ 2 V 1 *

= (g 1 2 -g 192 /g) 1 XT TNlBN-lX* (23)
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where

9 a 2w(-Re{N ik }sinwdiA + Im{N ik}coswd ik) (24)
ik

= i& 2w (- Re {Nr t } nd + Im{Nrt )cs ) (25)
2 3d t rtrt

and B = 'b )is found using

f0, (r,t) 0 (i,k)
g (26)

912 Dd t M i2w 2(-Re{N }k coswd i - Im{N }ks ind ), (r, t) =(i, k)

2 T\ 2 jw~d
3 (V*V) = -w e 1k, (m,n) = (i,k)

~21W e 1k, (m,n) (k,i) 
(~ ) i k

0 ,(m,n) # k:2"' (27)[

Then b has the following values:
in

(m ,n) = (i,k ), (k ,i) 2 g 2 I g w , 2 g g w
bik( !2jw - P(W + 2)e k(8a

b ki b A*

where i = 0 if (tr,t)#(i,k)vpI1 if (r,t)= i)

(in,n) = (r,t), (t,r) ; (r,t)O(i,k)

g9 2_ _ (28b)

b b *tr rt

(in,n) 0 (i,k), (k,i), (r,t), (t,r)

b n=2g g2  -Pg 12 )e jwdinn (28c)

g 2
b b *

nm mn
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Using

< > Se.'~ rt + N r r t (29)

S+ N Ir t

and writing

xTN-1I B-1x i 2 (Nm)2

mn m m

mn~m

where

G(m,n) = X pNpm I * (31)
q q

The elements of the FIM are

rtFiIL (g12 - 9 9 /g)

- b { +N (Nm)

g+ m

4- 2 ((Scoswd + Re{N * Re {Nxmflmq}

qfm mq mq

-(-Ssinud + ImfN * I))nIm'mq ))
mq mq

+ 2 ((Scoswd pq+ Re{N* }) ReNP~q
p~m q>p pp

-(-SsinWd pq + ImN pq 1) Im{NP~m}

+ N pm1 2 (Scosw d + Re{N * ) I
+ 2 [Relb mn < Re{G(m,n))>

m n>m mf

-Im{bmI < Im{G(m,n)} >]} (32)
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wher e

<Re{G(m,n)}> = (R{1~Pm~nflJ (S coswd pq+ RefN* q})
pq q pq

1-{ImfNp nql (-S sinwd + Tm(N 1) (33)
pq pq

and

< Im{G(m,n)l> = f~mNq( siw + lm{N* I)

p q pq pq

+ Im{ pm Nnq}(S coswd + Re{N*})

pq pq

Use of these elements in the FIM is restricted for inversion to the

CRME to M-i independent delays. Further examination of (32) for diffuse

noise is given in Appendix C.



We now investigate for the M-1 d. changes in these earlier results

caused by consideration of noise which is spatially correlated.

V. Maximum Likelihood Estimation

of the M-1 Delays di-d

We again maximize A by maximizing

A' = - Z £n g + I xTN-IV*VTN-IX*/g (34)

B+ B+

Writing
T -1

X N

= X N X Np 2 
.... ) X N (35)

p p p
th

and the m,rr- element

T jw(d -d)I
(V*V) v =e J n

m,n mn

gives

XN-IV*V TN-IX*/g = g (YV Npm X *N)q
n

g mn p q

g Y V(Xm Nmm + X Npm) (X*N + Xq Nn)
m n pmI P q#n

= ! m ( X X n N m m n  + X N m  X * q n

g mn m n m q#n q

+ X *Nnn y X Npm
n p#m P

+ X X * Npm N qn. (36)

p#m q~n p q

In this form it may be seen that (34) differs from the spatially uncorrelated

noise case only in the -Y kn g term and the terms in parentheses in (36)
B+

other than X X * NmmNnn. If p = 0, kn g is not a function of the delaysmn

and all Npq  p # q, are zero. Then as the literature cited shows [3,4],

maximization of (6) reduces to either a beamformer (choosing M-1 d i) or a

system of M(M-1)/2 correlators (choosing di-d k).

Further manipulation of Eq. (36) when noise is diffuse is given in

App. A for a special "worst case" when all correlations 
are real and

equal.

• f
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Maximizing A means solving for d in

DA y .1 2Z + I t! XTN1 D (V*V T N1lX*
3dB1 Id. 9g 3d.

X TN- V*V TN- X* g ~ 0. (37)
2 D

Using

2=E; 2w j(-Re{Nip}sinw(d -d )+ Im.N ipcosw(d -d ))(38)

and

-ej(d1 -d .)

3VVT -0- -e j(d 2 d i) -0
Dd. jw

jw(d.-dl) ejw(di d2 . *.. M (39)

in (37) gives

- -7 1)~- (Re{Nip}sinw(d.i-d ) + Im{Nlp}cosw(d.i-d ))
i B+ p 1oi

+ I X N- AN- X* (40)
B+

w h e r e A = (a m n( i) ) a n d -~ w d m - g ; m n i o

amn (1 9 J Ow g /g) e jw(d d m = in i(41)

-i g/g) e 1j~ rn-d m m i n=i
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Now note that

X TN AN-Ix = a (i) (X X *N mNnn
mn

+ X N' Y X * qn + X *Nn n I X Npm
m q#n q n p#m P

+ X X q NPmN qn )  (42)

p#m q#m P q

Ignoring the first summation in (40) (from the Zn g term of A) and setting

(42) equal to zero for i = 2,3,...,M constitutes M-i nonlinear equations

in the M-1 unknowns d 2, d3 , .... dm (d1 = 0).

Equations (42) may be made real by observing that every (m,n) term has

its conjugate. Thus

XTN-1AN-lX* = a (i) (IX m 2(Nmm)2 + 2 Re{X Nmmy X q*Nmq
mmm m q~m q

m

p#m qqm P q

+ 21 7 (Re{a mn(i)}Re{G(m,n)}
m n>m
-Imta (i)}Im{G(m,n)}) (43)

mn

where

G(m,n) = X Npm q *N q  (44)
P q

Because the a (i) are functions of g. and g, and gi and g are functions of
mn 1 1

all delay differences dp -d q, the solution for di cannot be found in terms

X and X I alone nor even as a linear combination of the Xp X q* eJW(dp-dq
)

correlators.

VI. The Cramer-Rao Matrix Bound for the M-1 Delays d i-dI .

It is well known that ML estimators approach the Cramer-Rao bound

(CRMB). The variance bounds for the delay estimates di are the diagonal

elements in

CRMB = (FIM)-I = (-< grad (grad A')T>)-1 (45)
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wherein FIM is the Fisher Information Matrix, grad A' is a row vector whoseth t
n-- element is the derivative of A' with respect to the in- delay d

A' is the expression in (16), and <-> denotes expectation. The outer gradient

operator creates a matrix whose elements are - - -(- .). The inner partial
ak di

has already been given by (37) and (40). Continuing we find with d -

that

3 3A 1 3gi gigk

k B. g -d g2 T

T -1 32 (V*V
T ) gk 3 (V*VT)

+ XTN [ dkd -
kd d 3 d.

1 D g i V , T  _ i g ( vT )

I2 V*VT 1 g. 3 (V*VT
g adk  g adk

+ -22 gigkVVT]N-lX,} (46)

g

If k # i, then

=gi 2w (Re{N ik } cos w(di-dk) +Im{N ik } sin w(d -dk)) (47a)
k ik i

and 0, (m,n) 0 (k,i) or (i,k)

3dk di m,n w e k-i (m,n) = (k,i) (47b)

(d -d ) = (i,k)

These give

-3 DA'I
-- )  [ik - gigk/g

k dgi

T xN-uN-lx (48)

B+ g

where u have the following valuesmn

m # i,k; n # i,k

U (gk + __ jw (dm-d in (49a)
g
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(m,n) =(k,i) or (i,k)

u W2 gi + __ 2gigk+j(g gi jw(d k-d.) (49b)
Uki 9 - g _ +j(--)

u ik uki*

m k; n#0 i,k or n k; m 0 i,k

uk = (_-~ + ik .. ~weW ~ n) (49c)
gn 9 2 g

U mk " km

m i ; n 0 1, k or n = 1; m 0 i,k

-gk 2ggik g wd_
= in -9+ ik 9jw eJ(i n (49d)

uml im

m n
-gk 2g e~

"m g 2 (49e)

Now the (FIM) may be written ( I k)

(FIM). I Egi - g

B+

1 < Um (IX m12 (N1" 2
g B+ m

+2 Re{X N' I X *Nmqx
m q~m q

p~m q~m ~

+2 1 (Re{u mnI Re {G (ni,n)}
m n>m

-Im{u mn}Im{G(m,n)})J> (50)

where G(m,n) = X p p X q*NlcI as in (44).
q q
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Writing all X pX q* as in (129 gives

<X X Se W~p q)±pq p7q(51)
p q S + N19p q

<RetG(m,n)}> 7 7 N cosw(d pd) + Re(f 'q

p q p q pq

+It 1  JP~n~ csw(d -d )+ Rm{N *1 (53)
p q pq

and

p~m q~m 
pq mq(

=2 [R7 N cosw(d -d + 4 Re{N* }
p~m q>p , m q

-iilpn qq (-S sinw(d -d + 4-Iz[N{
p q pq

+ I (lNfl 1 (S + N 1) (5-v)

giving

(FIM) ik ( 1 - gg/g)

u[(S+N )(mm)29 + m mm

+ (-SN csn&(d -d ) + Im{N*1)

m q mq

+ 2 7 R{Nm 7 j (S cosw(d -d )+ Rc,{N* }
p~m q>p,Om P q pq

-{ImfNpmNmq, (-S sinw(d -d )+ Im{N*})
mq mq

+ X IN pm 2 (S + N1)
pom

+ 2 7 Re{u mnI < Re{G(m,n)l>
mi n>m m

-Imfu ) < Im{G(m,n)) >1) (55)
mn
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For the diagonals of the FIM, let

k = i, then

3g = gii = -2w2 X (Re{NiPcosw(d.-dp)
3d k 1~ pok=ipi

-Im{N i p } sinw(d i-d p )  (56)

and

ejw(d 1-d )

a 2 (V*VT) =_2 -0- ejw(d 2 -di) -0-

3d. 2

-w~ - e ~d di )d O, -d2e(

e jw (cL-di) -0

These give
-2 = S 1 {[ - gi2  T- I I(58)

A2  Q9 . /gI X N- WNI X*} 58
3d i B+ g

where w have the following values.

m # i, n # i, m 0 n

wren =(-gii/g) ejw(dM-dn) + 2(gi 2/g2) eJW(dm-dn) (59a)

m = i, n # i or n = i,m~i

W = (- 2 
- gii/g + 2 gi 2 /g 2 - 2(gi/g)jw) ejw(di-dn) (59b)

w w*
mn ir

m =fn

w = - gii/g + 2 gi2 /g2  (59c)

Using the above results gives

(FIM)ii I I (gi - gi 2 /g)
B+
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_ i ' { Wmm (S+N1 )N)

g B+ m

+ 2 Nmm ((S cosw(d -d ) + Re{N* })Rc{Nmq;
q#m m q mq

-(-8 sinw(d -d ) + Im {N* 1) Im{NmqD)
m q mq

+ 2 y  q (S cosw(d -d ) + Re{Nq 1) RefNPmNmq 1

pim q>p~$m pJ q pq

-(-S sinw(d -d q ) + Im{N* )m} NmNmq)
2 1 q pqI

+ I INp m  (S + NI)]
p#m

+ 2 [Rewmn I < Re(G(m,n)} >

m n>m

-Im{w I < Im {G(m,n)} >} (60)mn

To compare with previous results observe in (55) and (60) that if noise,

is spatially uncorrelated, gi = 0, and only Uik = U W* = we ±w(didk) and
ik ki~.- 2 ±jw(d -d )

w. W w 2 e i n are non-zero. Further, in (52) and (53) p = m
in ni

and q n are the only non-zero terms. Utilizing the above,

2

(F11) -2 - (cosw(d -d ) N N S cosi(d -d k )
ik 9i- k i kB+

+ sinw(d.-dk ) NiiNkk S sinw(di-dk))

2 N iiNkkS,

B+ g
i ii

where g = -1 + N ,

and similarly
2

) i i  N inn S.
(FIm). 22 N S

B+ i g

It is readily seen that this FIM is identical to Eq. 7 (the same as Eq. 12

in [31).

Unfortunately the FIM defined by (55) and (60) has elements which are

in general functions of the delays themselves, making analysis difficult.

However, in the next section we will assume a signal source at infinity,

allowing some simplification.
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VII. Evaluation of the CRMB

It is unreasonable to evaluate and invert the FIM in sections IV or

VI in general because it is a function of all d.. However, if wavefront
1

curvature is ignored, each delay may be written d. = iA where A is the
1

delay between adjacent sensors. We may also let A vary between zero and

WA = Tr for a single frequency. Then d - d = (p-q)A for example. This
P' q !

is the beam former case.

Because of the generality of the formulas we may also vary the elements

of N, using the symmetric matrix (as in [11])

1 P P2  ... Pm-1

N = N1 / 1 PI  Pm-2

I

wherein pr = 0 e- . Such a correlation is appropriate for turbulent

boundary layer noises and its magnitude with respect to the unity diagonal

accounts for isotropic noise. In the following simulations we choose

0, 0.2, 0.4 and w3 having values 0 through 7/2.

Figures 1-24 show the CRMB (1,I) element, center element, or last

element as a function of the various parameters. Table I is presented as

a guide to comparisons.

The formulas for the FIM may be applied to arrays with clustered

elements as well, if the spacing between clusters is considered. We have

done this in producing the data in Figures 25 through 30. Zero correlation

between clusters is assumed.

The clustered (or grouped) arrays studied are as shown here.

• 3 sensors
S- 9 sensors

. . . . . . . . . . . . . . . 15 sensors

The spacing between array ends and ends-to-center remains fixed. The

effect of adding sensors to the cluster when spatially correlated noise

is present can then be observed.

Comments derived from the Figures are as follows
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1. Figures 1 through 9 show that variance decreases monotonically

with SNR and that variations in p from 0 through 0.4 1450 have

unpredictable, but not large effects.

2. Figures I and 7 for example show that more sensors (from 3 to

15) will reduce the variance of a delay.

3. Figures 1,2 or 3,4 or 5,6 or 7,8,9 show that variance bounds for

delays end-to-center will vary with 0 differently than those for

end-to-end, but not a lot. Also the end-to-end delays vary

least.

4. Comparing Figs. 1 and 3 for example shows that the effect of

on a delay estimator will vary with wA (look angle.) This variance

is easier to see in Figures 10-24.

5. Figures 10-24 demonstrate that the bounds are effected by look

angle to a much larger extent when p is increased to 0.4. As much

as 5dB (Figs. 11,17) is observed at SNR = 0.1.

6. Comparing Figures in 10-24 with like SNR and M shows that different

delays are effected quite differently as wA varies; i.e. CRPB(l,l),

(2,2), (7,7) or (14,14) all vary differently with p and jA.

7. Grouping sensors when spatial noise correlation is present has

a detrimental effect at low SNR. This may be seen in Figures

25, 26, which also show that the midpoint and end delay variances

are equal at A = 0. (They are not equal at other wA per comment

4 above). The difference between curves A and B is that the 9 x 9

noise covariance matrix for curve B has 3 x 3 blocks on the

diagonal while curve A's noise matrix is full. Thus curve A

represents a cluster of nine sensors while curve B assumes each

cluster of 3 has noise independent from the other clusters. For

p = 0.2 and wA= 0 the effect is 0.3 dB at SNR = 0.1.

8. Pursuing the question of how much clustering is effective when

spatial noise is present, Figures 27 through 30 plot the variance

bounds vs sensor number M while holding array length constant.

We conclude that delay variances are reduced much less for M

changing from 9 to 15 than for M changing from 3 to 9.
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The last comment is meant to be one of the basic conclusions of this

study: that for significant spatially correlated noise, there is a point

beyond which it does not pay to increase sensor number in a cluster when

the purpose is to reduce delay variance between clusters.

II
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M=3, WOELTR=O9 NM=2

102

10-1 SNR10

Figure 1. CRMB(1,1) vs SNR.M=3. A--Q=0, B---p=O.2, C--O=jO.2;
D--P=O.4, E--P=jO.4, F--P=O.4(1+j).wA=O
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It,'~~ I a I
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SNR

Figure 2. CRMB (2,2) vs SNR.M=3. A--P=0, B--P=Q.2, C--p=jO.2;

D--P=0.4, E--p=jO.4, F--p=O.4(1+j).wA0O

..... - --
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Figure 3. CRIB(1,1) vs SNR.M3. A--p0O, B--P=O.2, C--P=jO.2;
D--P0.4, E--p-jO.4, F--p=O.4(1+j) .wM=r/4
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Figure 4. CRMB(2,2) vs SNR.M=3. A--p=O, B--p=0.2, C--p=jO.2;
D--P=0.4, E--pjO.4, F--p=0.4(1+j).wAsrr/4
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Figure 5. CRIB(1,1) vs SNR.M-3. A--p=O, B--P=0.2, C--P~jO.2;
D--P=O.4, E--P=JO.4, F--p=0.4(l+j).ciAzn7/2
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101

torn
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Figure 6. CRMB(2,2) vs SNR.M=3. A--p0O, B--p=O.2, c--p=jo.2;
D--P=O.4, E--P=jO.4, F--P=0.4(1+j).wA~-JT/2
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M=15,WOELTR=O,NM=14
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SNR

Figure 7. CRMB(l,l) vs SNR. M1=15. A--P=O, B--P=O.2, C--4Q=jO.2;
D--P=0.4, E--P=jO.4, F--p=O.4(+j).w~A=O
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Figure 8. CRMB(7,7) vs SNR.M=15. A--Q0O, B--P=0.2, C--pQjO.2;
D--P=0.4, E--P=J0.4, F--p=O.4(1+j).wA=0
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Figure 9. CRMB(14,14) vs SNR. M=15. A--O=O, B--P=O.2, C--Q=jO.2;
D--P=O.4, E--P=JO.4, F--p=O.4(1+j).wA=O
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Figure 10. CRMB(1,I) vs wA. M=3. A--p=0.0, B--)=0.2;
C--P=0.4.SNR=O.i
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'2.

Figure 12. CRI4B(1,l) vs wA. M=3,. A--P=0.O, B--p=O.2;
C--P=O.4.SNR=1.O

A1
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OEGR)EDELTA

Figure 13. CRMB(2,2) vs wA. M=3. A--P=0.0, B--c= 0.2;
C--P=0.4.SNR=1.0
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Figure 14. CRIB(,I) vs wA. M=3. A--P=O.O, B--p=0.2;

C--p=0.4.SNR=10.0
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Figure 15. CRMB(2,2) vs WA. 11i=3. A--p=O.O, B--P=O.2;
C--P=0.4.SNR=-1O.O
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Figure 16. CRMB(1,I) vs wA. M=15. A--p=0.O, B--P=O.2;
C---P=0.4.SNR=O.1
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Figure 17. CRMB(7,7) vs wA. M=15. A--p=0.0, B--p=0.2;
C--p=0.4.SNR=O.1

- - --



40

M=15,SNR=.1,NM=14

101

l o l l , I I , I f I I i I I ,

0 .2 4 .6 .8 1.0 1.2 1.i 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2
OIIEGRDELTR

Figure 18. CRMB(14,14) vs wA. M=15. A--p=0
-0, B--p=0.2;

C--p=0.4.SNR=0,1

i
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Figure 19. CRMB(1,1) vs WA. M15. A--P=O.0, B---P=O.2;
C--P=0.4.SNR=1.O
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Figure 20. CRMB(7,7) vs wA. M=15. A--p=0.0, B--P=0.2;
C--p-0.4.SNR=1.O
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Figure 21. CRMB(14,14) vs wA. M=15. A--p=0.0, B--O=0.2;iii C--p=0.4.SNR=1.0

I
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Figure 22. CRMB(1,1) vs wA. M=15. A--P=0.O, R--P=O.2;
C--p=0.4.SNR=10.0
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Figure 23. CRMB(7,7) vs WA. M=15. A--p=0.0, B--P=0.2;

C--P=0.4.SNR=1O.0
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Figure 24. CRMB(14,14) vs wA. M-15. A--p=0.0, B--P=0.2;
C--P=0.4.SNR=10.O
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Figure 25. CRMB(8,8) vs SNR. M=9, p=0.2, wZ=O. A -- equally
spaced sensors with full 9x9 N-matrix, B--equally

spaced sensors with 3x3 block-diagonal N matrix
(cluster-independent noise).
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Figure 26. CRMB(4,4) vs SNR. M=9, 0=0.2, wA=0. A--equally

spaced sensors with full 9x9 N-matrix, B--equally
spaced sensors with 3x3 block-diagonal N matrix
(cluster-independent noise).
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Figure 27. CRNB(1,1) vs M. SNRl1.0. A--p=0.0, B--p=0.2,
C--P=0.4. Equally spaced sensors, full N-matrix.
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Figure 28. CRMB(l,1) vs M. P=0.2. A--SNR=0.1, B--SNR=l.0,
C--SNR=l0.0. Equally spaced sensors, full N matrix.
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Figure 29. CRMB(M-1,M-l) vs M. p=0.2. A--SNR=0.1, B--SNR=l.0,
C--SNR=10.0. 14 sensors have constant array length;
clusters of 1, 3, and 5 elements at center and ends
of array. No noise correlation between clusters.
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1.32

1.30

1.28

1.28

1. 24

1.22

1.20

1,16
W

1I.16 0

1. iq

1.12

1.10

1.06
3 1 5 6 7 8 9 10 11 12 13 1A 15

SENSORS

Figure 30. CRMB(M-l,M-l) vs M. SNR=.0. A--p=0.0, B--P=0.2,
C--p-0.4. M sensors have constant array length;
clusters of 1, 3, and 5 elements at center and ends
of array. No noise correlation between clusters.
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VIII. Conclusions

Although a closed-form solution for the ML estimate of the dik has not

been obtained, nonlinear equations which theoretically may be solved are

derived. These show considerable complexity which might be somewhat

reduced under rather confining conditions. No simple hardware analogy is

apparent.

Th;e fact that the ML estimators of the dik are functions of all the

other delays may be a positive observation, that is, no one delay is estimated

without consideration of the others. However, it has been shown (at least

for uncorrelated noises) by Schultheiss [5] that M-1 delays are sufficient

in practicality except when all sensors have small SNR. In fact the CRMB

may not be found from (FIM) using the formulas given herein unless an

independent set of d is used.
ik

The variances computed for the delays d. show considerable - several

dB - deviation as p varies and as M varies. The effect is greater at some

look angles than others, and also depends on which delay is considered.

For sufficient spatially correlated noise, clustering sensors is not

efficient beyond a certain number. Here we show 6 to 9 sensors is a

reasonable number.
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Appendix A. Evaluation of the M(M-l)/2

Delay Equations for Dispersive Noise

Cron and Sherman [7] have found spatial correlation factors as a

function of sensor separation distance and wavelength for diffuse surface

noise and for diffuse volume noise. If distances between all sensors

considered are small with respect to half-wavelength, the correlations are

all essentially a constant. Although long arrays span much more than half

a wavelength, a constant correlation is useful when some of the sensors are

clustered. At half wavelength the correlation is zero for volume noise,

but the zero location varies with other geometrical parameters for surface

noise. Both Cron and Sherman [7] and Piersol [8] have suggested exploiting

the correlation zero distances to improve delay estimation; the implication

being that the less correlation the better. Thus it is reasonable to assume

a worst case in which noise at any two sensors has a maximum correlation

P = P(k). Due to the symmetry of the diffuse noise source, there is no

time delay associated with the correlation; i.e., all noise cross spectra

are real. Thus let the cross spectral matrix for diffuse noise be

1

N = N "A l

l (Al)

For this N, use of the theorem

(I + rc T rc
l+r c

gives

N-l= (N
pq)

where /
whereii = + (M-2)0 (A2a)

= N (l-p) + (Ml)p/

NN(l )) , p q. (A2b)



A2

Eq. (19) may be written

T -1 -1
g - 1 /g + XN-UN- X*}O. (M3)

where the elements u mnare given in Eq. (21), and g1 is in (20c).

A simplification may be obtained by observing the relative magnitude of

p q

Subsitutng (2) nto A4)(ive

7-1 S
NvNV (l-)(+-l) [M(l+(M-2)p)

-2p~ I coswd p] (A5)
p q>p p

Since there are M(11-1)/2 terms in the double sum and icosel s 1,

S< MS/N 1 <S 5 T N-l* < MS/N 1[1+2((M-3/4) 2 _ - )M (06)
1 NT6 )pM

1 1+(M-l) p (l-P) (1+(R-1) p)

Thus under the very tolerable conditions that MS/(N 1 (+(M-l)p) 1l or

MS -< 1) / M-1) ,we note that in (21)

2SNikwsinwdi I <1-2wp sinwdkM
1+VT N-l* 1 (l-P)(1+(M-1)P) 1 N(1+(M-l)) (7

- 2wpsinwd ik /(M(l-P))

Using (A7) in (21) gives

we j'dik(j 2psinwd ik), (m,n) =(i,k)

rn(l-P)

- we jwik(-j _ 2piw k ), (m,n) = (k,i) (A8)

jwd
-2pwe inn sinwdk

M(l-P) ,(m,n) $(i,k), (k,i)



A3

The following steps will lead to an equation, nonlinear, for dik

in terms of the other delays and having only real quantities. Thus the dik

terms are separated from others in the summations. The set of M(M-I)/2

equations could theoretically be solved for any M-1 independent unknowns

d ik Further, assumptions about large M, small o, or small dik lead to

simplifications and linearizations, but these are not pursued here.

Using the approximations (A8) in (A3) gives

1 k T-1 -1lT
i 2wNksdi. + XTN UN X}

B+ 
g  1

1 g [2wNiksindi

B+ g 
k

-2pwDsirtidik prX *NprNtqe jidtrt

M(1P) p q (r,t) # (k,l), (i,k)

2psinwdik
+W i ) X X N PiNkqeJ wd ik

p q M(l-P) p q

2p ) X X * NPkNiq e-Jwd ik) = 0 (A9
+ ( -p) p q

Grouping index pairs (p,q) according to matches with either m or n or_±jwd -

both in e mn and using ct and 6 for the N
- 1 elements gives (see Appendix B)

1 {2wN sLnwdik
B+ g

g 2 pw sinwdik X I [(2 (JX r12+IX t2)

M(l-P) (r,t)#(i,k),(k,i)

+2a 2  1 1 X pX q*) coswdrt
p~r,t;q#r,t p q

+0 2 XrXt + 2 XtXr, + OL [ X X * + a 
2  X X*

rqt, r q q, t q2

+c 2 ~ X X + XXt*)eJ Wrt

p p t

+ (( 2 2XtXr + 2 X X * + .6 X X q
rtrq r q , t q

q q

+ X* + I2 XpXt,)e- drt]
p X tp p'



A4

- W( 2Psinwdf )k (2a 3(JXil 2 +IX kI2) + 2a2  X p X q) coswd
MU-P) p q' qi

- wO(2c4(1Xj 2 + Ix kI2 + 2a 2 77Xp X q) sinwd i

" ___ W~- i XiXk + i q * t k~q*M(l-P) q q
+c a EX X.* + 0. X x *]eJik

p pI , p k

+ W(j 2psinwd ik)[at2 x ix k* + 62 X X * + a~ 2 X iX *'+ X~ XX*
M(1-p) qi q~k

+ aC6 7 X pX .* + Ot2 7X pX k]e1J wikW = 0 (Al 0)

where p' and q' indicate omission in their sequences of r and t for the

e jUdrt terms or i and k for the e jdik terms.

Noting that the coefficients of e ±jwdmn are complex conjugates, we may

write, using

(a + jb) (cosO+Jsine) = a cose - bsin6 + j(b cose+asine)

(a - jb) (cosO-jsine) = a cosO - bsin6 - j(b cosO+a sine)

B+g {2w a sinwd i

M~2 Ps n o i PI(c ( IXrI +IX ti )
M~l-Q) (r,t)#(i,k),(k,i)

+ 7t2Z Xp Xq *) coswd rt
p'q'

+((a 2 +x )Re } + (a +a)7 Re{X X *+ X*X Icoswd
r~ tR{X r p t p rt

W ( 2)1I {X*XI + (a13a2)17 I{X rX p + X t*X p)sinWd rt

-2w ( (4 ( I 2 Ik 2) + 2 t 2XX*) sinwdk

ivui + i1I 7 p q ik

M(l-P) p'k q' i



A5

+ (( 2 -a2 )I {XiXk*} + (-a2), Im{XiX* + XpXk*)coswd
pp k

_ 2psin d i, -1 2
"(02- )I {x Xk*} + (-& 2) ,I {X.X * + XpXk*sindik

M(l-P) m ik P, mI pkIs i

+ ((2 + 2 )Re {XiXk,} + (s+ 2 ) , Re{XiX p + Xp X k})sin dik

+ (2Psind ik)(( 2 + 62 )ReiXk,} + (c B+a2) Re{X.X * + X X*})cosudi ]}=0
M(l-P) i k ip pk 1k (All)

where p 1 if r = t, p = 2 otherwise.

Note that all elements in Eq. (All) are real because for example

X X X *I i1 2 + 2 Re{X X *}
p' q P q p#i,k P p'q'>p' p q

First simplifications of (All)may be obtained by observing 2>>01 when

1 + (M-2)p>>I@p, which is often true. The 2wasinwdik term is negligible

with respect to any of the B or fc terms, particularly at large SNR. Also

at large SNR, terms such as Re{X X *} are approximately equal to S coswdrp

and terms such as I {X X *} are approximately Ssind rp. If 2P/(M(l-O))<<1,
m rp r

many terms drop out.

If the double sum over r,t could be omitted, and if Wd <<1, the
1k

equation could be linearized, but this is not generally feasible. There

are M(M-1)/2 terms in the double sum, each of comparable magnitude to the

dik terms, and the double sum is multiplied by 2pw sinudiMk/(4(l-P)). So

M(M-I) •2o sinwdik<
roughly to drop out the double sum over r, t, we require 2 ik-o l

or (M-l)p/(l-o)<<l. This is not likely.
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Appendix B. Separation of Terms, Diffuse Noise

In Eq. (A9) the double sum over r,t is broken into parts for (r,t) $

(i,k), (k,i) and (r,t) = (i,k), (k,i). Each part then has terms such as

e JA ik X X *NPi N 
k q + e-Jw dik X X *NPk N 

i q

pq pq pq

wherein r and t replace i and k for the other part of (A9). The double sum

over p, q may further be broken down into parts for which p or q or both

are equal to i or k or both, each case giving different values for Np i or
kq +

Nk . These give the following results, using a and a from (A2) and e and

e- for the exponentials. (Similar results are obtained for the difference

of the conjugate exponentials, yielding sinwdik terms).

p,q = i,i

8aLX1 12 e+ + CjXi12 e-= 2alxil2coswdik

pog = k,k

28t IXk2 coswdik

p,q = i,k

82 Xk* + 2 *-
XX e +a XiX e

p,q = k,i
2 *e+ 2Xk*-

a XkXi e + XX e

p,q = i,q # i,k

XiXq* aa e+ + I XiXq  a e
q

p,q = kq # i,k

XkXq a2 e+ + I XkXq a e
q q

pq p i,k;q = i

I X Xi a2 e+ +1 XpX i * e
p p

71



B2

p,g p #i,k;g k

SXp Xk 4~ e+ + x RpXk c e-

p p

p #i,k;g 0 i,k

2 o Xx X coswdA
p~i,k q~i,k pq i
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Appendix C. Evaluation of FIM for Diffuse Noise,

An Independent Subset of M(M-l)/2 Delays

The following applies to any subset of M-1 independent delays d ik.

To determine the FIM, we must calculate the expected values of X X *r t
using the noise matrix in (Al). This gives

S + N , r t<X X * ' = { . S+N I r=t!

r t Se- cdrt + pNI, r# t (Cl)

We also note that (23) becomes for real N

=2, - 2 ik 2 k2 s 2

a2A" f{2w gN cosd + 4w 2(N i
k ) sin 2d )/g2

~d B+ik ikik 2  
B+ T - -

+ x N A(m,n)N-X*} (C2)

The elements of A(m,n) = (a n) are (using (24)-(28) and real N)

1~ 2 ~ ik T wik___
a (2V*V + 2Nikcswd ik (V*VT ) + sinwdik (
mn m,n 2 m,n 2 ik m,n

g g

+8w2 (N ik) 2sin2 wdik (V*VT) 
I

93 (VTm n )

2 Ad 2 2 N ik coswdke j u d ik
-we j ik+ __kn _eJik

g

2 ik j wd
+j4w N sinwd ik e ik

g

9+8w2 (N ik) 2sin 2 wdi e jdik, (m,n) (i,k) (M3)

2
g

222 N cosdik e jdmn + 8w (N ) sin 21 k e jwdmn, (mn)#(i,k), (k,i)
gg

and a a *.
nm mn

- -. . ------



C2

Now from (C2) we may expand

T -1 -1 11~ < rm N nt<X N AN X*> =LXN a N X*>
r mn tm n r t

- < X X *> N rmNnta (C4)
mnr rt mn

Applying (Ci), (C3) and (CO) to (C2) and using the separation-of-

terms process in Appendix B gives for the diagonal elements of the FIN,

(FIM) 2_ {acoswd + -0 sin AVV BW ik gik

+ -1+2ccoswd. 8a sin wd.
"(I+ik + ik ) [4o.B(S+N 1)coswd ik

22 2

+4(M-2) PN 1 ( +at3)cosuwd.i

+2S~ ~~SOL~~ik-diq) + iqs~ ik 2 ik- kq

+ a~cosw(d ik+d ))
2 2

+ 2a ((M-2)(S+N) + 2((M-2) -(M-2))PN 1

+ +2 1 VP S coswid pq)coswd ikl
p' q'>'p

-
4 asinwd ik ) t 4 a (S+N )sinWd~

2 2 2+ 2(oct6 ) N1s inwd k+ 2 at S sin2wd i
"(-)PN 1 k ik) iwdi

2

q' , cs~ ikd iq a acosw(d iq+d ik + Ot cosw(d kd k

-aC&OSW(d ik+ddq))

+ 2aL2 (M-2)(S+N ) + 2((M-2) 2 _ (M-2)) PN1 + 2 coswd pq)sinwd k

+ 2 2a os d k W O 2s n U4 kp'q'>p 
' q1

2) Itosi 8Iasn ~k [4a13(S+N 1 )coswd
g 2 (r,t)i(i,k)

g (k,i)



C3

* 2 (X 22 )qN coswd + 2 2S + 2a 2S cos 2wd
1 rt rt

+ 2 S ( cosw(d -d ) + a2cosw(dr+d
qIrt rq rq rt

+ C 2cosw(d rt-d tq) + a cosw(d rt+drq))

+ 2a2 ((M-2)(S+N) + 2((M-2)2 - (M-2))PN1

+ 2 X I Scoswd q )coswd rt} (C5
p' q>pr

Some reduction in the number of terms may be obtained by gathering

coefficients of sines and cosines, but this will not be done here. Rather

the various terms are left for better inspection and identification with

their sources. However, let it be observed that the diagonal elements

(FIM)vv may be written

2 2 2
(FIM)w = - 2acoswdk + sinwd

B+i g ik

+ (-i + 2acoswd ik + 8a2sin2Wdik) A1 (i,k)

g 2
g

_ 4sin ik ) A2 (i,k)

9

+ (2w21cswdik + 8W2a2Sin2"dik) A3 (r,t)) (C6)g 2 )(r,t)#(i,k), (k,i)

g

where A1, A2, and A3 are as indicated in (C5). These will be used again in

the off-diagonal elements' expression.

The off-diagonals are found similarly.

Utilizing functions A1, A2, and A3 as in (CS) and (C4) the

off-diagonals are
22

(FIM) = - 1- {4 a 2sinud. sinwd /g
Iw B+ ik rtB+

+ 8a2Wsindrt sinwdik AI(i,k)
2

9

+ 2 a sinGdrt A2(i,k)
g

1



C4

* 8a2 sinwd rt sin1dik A (r, t)
2 1

g

2 a s inwd ik A2(r,t)+ A2(r____t)_

g
+ 82i rt sinwdik A (mn) (C7)

2 (m,n)#(i,k),(k,i)
g (r,t),(t,r)

A few remarks are in order at this point. The obvious feature is that

expressions (C6) and (C7) for the FIM elements are very complex; they are

functions not only of the delays whose covariance is sought but also of

22
all other delays. One simplification is to discard a and/or a- factor terms

with respect to a2 terms. Another is to consider the case where all delays

are equal to zero. For a zero delay vector, the covariances in (7) are

also zero, the inversion of the FIM is considerably simplified, and the

diagonal elements of FIM and their inverses are functions of p,M,S and N1 only.

It is interesting that in this zero-delay situation the covarLance

of two delays is zero. This differs from the ML estimation of the M-1

delays referred to a single sensor (see Eq. 7). Those delays have a non-

zero covariance with or without correlated noise. Mathematically the

difference is between 3 3VV and D (V*VT
3drt I ik ) 2 d 1

The second-order partial with double subscripted variables is zero, while
*T

that with single subscripts is not. This is because the elements of V V

are of the form exp(jw(di-dk)) exp(jwdik). For example if d = d and

d = d then ( T ) yields an element w exp(jw(dl-d2 )) # 0, but
2 1

2 (V*V T) 0. Further, if p = 0, then the off-diagonal elements ofd rt ai k

the FIM of the dik are always zero. Evidently with spatially uncorrelated

noise, ML estimates of the dik are uncorrelated, although either the

generalized cross-correlator measurements of dik which yield ML estimates

of the dj [3,4] or the ML estimates of the M-1 delays d, are correlated,

as shown in Eqs. (13) and (7).
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